
www.manaraa.com

Domain Driven Web Development With WebJinn

Sergei Kojarski David H. Lorenz
�

Northeastern University
College of Computer & Information Science

Boston, Massachusetts 02115 USA� kojarski,lorenz � @ccs.neu.edu

ABSTRACT
Web application development cuts across the HTTP protocol, the
client-side presentation language (HTML, XML), the server-side
technology (Servlets, JSP, ASP, PHP), and the underlying resource
(files, database, information system). Consequently, web develop-
ment concerns including functionality, presentation, control, and
structure cross-cut, leading to tangled and scattered code that is
hard to develop, maintain, and reuse. In this paper we analyze
the cause, consequence, and remedy for this crosscutting. We dis-
tinguish between intra-crosscutting that results in code tangling
and inter-crosscutting that results in code scattering. To resolve
inter-crosscutting, we present a new web application development
model named XP that introduces extension points as place-holders
for structure-dependent code. We present another model named
DDD that incorporates XP into the Model-View-Controller (MVC)
model to resolve both intra- and inter-crosscutting. WebJinn is a
novel domain-driven web development framework that implements
the DDD model. WebJinn has been used to develop web applica-
tions at several web sites. Domain driven web development with
WebJinn benefits from a significant improvement in code reuse,
adaptability, and maintainability.

Categories and Subject Descriptors
D.2.11 [Software Architectures]: Domain-specific architectures,
Patterns; D.2.13 [Reusable Software]: Domain engineering, Reuse
models; D.2.2 [Design Tools and Techniques]: Modules and in-
terfaces, Software libraries; H.3.5 [Online Information Services]:
Web-based services.

General Terms
Design, Languages.

Keywords
Web development, Web programming, Web application, Genera-
tive programming, Aspect-oriented programming (AOP), Cross-
cutting concerns, Intra-crosscutting, Inter-crosscutting, Tangling,
Scattering, Dynamic pages, Model-view-controller (MVC), JSP,
Struts, Reusability, Adaptability.�

Supported in part by the National Science Foundation (NSF) un-
der Grant No. CCR-0098643 and CCR-0204432, and by the Insti-
tute for Complex Scientific Software at Northeastern University.

Copyright is held by the author/owner.
OOPSLA’03, October 26–30, 2003, Anaheim, California, USA.
ACM 1-58113-751-6/03/0010.

Response

Request

Client

Resource

HTTP Server

Application
Web

Figure 1: Web application

1. INTRODUCTION
A web application is generally an HTTP gateway to a certain

server-side resource (e.g., a file, a database, an information system).
Request parameters are processed by the web server and passed
to the web application, which dynamically generates an HTTP re-
sponse (Figure 1). The process of writing web applications is called
web development [8].

A web application is typically written in at least two program-
ming languages. The presentation is described in a client-side lan-
guage (e.g., HTML or XML). The functionality is specified us-
ing a server-side language (e.g., Perl, Python, ASP, JSP, Java, C,
Smalltalk). Since the two sets of languages require distinct skills
with completely different expertise, web development involves two
development groups, namely web designers (presentation experts)
and web programmers (functionality experts).

1.1 Web Development Evolution
The evolution of web application development models is driven

by the desire to modularize crosscutting concerns [18] and decrease
the dependency between web designers and web programmers [22].

We identify the following evolutionary steps in web develop-
ment:�

0 � Static page model. In the beginning web pages were static.
Static pages prescribe an immediate HTTP response with no
required preprocessing. The response is written in HTML
or in some other data presentation languages (such as XML)
and does not depend on arguments.�

1 � CGI script. Scripts use print-like statements to generate a
dynamic response. The presentation code is scattered across
the script code and “hidden” in the print statements. This
results in a strong coupling between presentation and func-
tionality.�

2 � Dynamic page model. Dynamic pages reverse the depen-
dency between presentation and functionality. A dynamic
page is written in a presentation-like language with the func-
tional part embedded into the page code via special tags—
scriplets. Despite the much cleaner look of a dynamic page

www.manaraa.com

crosscutting model framework
intra MVC Struts
inter XP WebJinn/XP

intra + inter DDD WebJinn/DDD

Table 1: Problems, solutions, and implementations

relative to a script file, the presentation and functionality are
still tangled.�

3A � MVC model. More recently, a Model-View-Controller [11]
(MVC) model is being employed in web development. The
Apache Struts framework [14] is a well-known example of
this web application model. While the MVC model reduces
code tangling within individual pages (intra-crosscutting), it
does not address a more severe code scattering across pages
(inter-crosscutting).

1.2 Contribution
The contribution of this paper is in introducing two new web

development models:�
3B � XP model. The XP model uses extension points (XP) in order

to better control inter-crosscutting in web development code.
WebJinn/XP is a framework implementing the XP model.�

4 � DDD model. The DDD model incorporates XP into the MVC
model to unweave both inter- and intra-crosscutting. WebJin-
n/DDD is a framework implementing the DDD model.

We propose the DDD model as the next logical step in the web
development evolutionary path. Tangling and scattering are in-
herent problems in dynamic pages. Tangling is caused by intra-
crosscutting; scattering by inter-crosscutting. The DDD model com-
bines the MVC and XP web models to disentangle both intra- and
inter-crosscutting concerns (Table 1).

1.3 Structure of the Paper
Section 2 presents a typical web application example, imple-

mented in the dynamic page model. Using this example we demon-
strate the problem of crosscutting concerns in web development.
Section 3 discusses the causes and consequences of crosscutting.
Section 4 presents a solution to inter-crosscutting, introducing the
XP model and the WebJinn/XP framework. Section 5 introduces
the DDD model and the WebJinn/DDD framework, and lists ben-
efits and limitations of the framework. Section 6 concludes and
discusses future work.

2. MOTIVATION
Consider a guestbook web application that allows visitors to post

messages and read messages posted by others. The guestbook can
be implemented as a set of dynamic web pages that provide access
to a guestbook table on the server-side database system. For
example, a simple implementation in JSP [4] using MySQL [2, 7]
consists of the following three pages:1

select.jsp (Listing 1): This page retrieves and displays all the
records in the guestbook database table.�

We illustrate the guestbook example concretely using JSP pages,
but the crosscutting problems shown here are not unique to JSP—
they exist in other dynamic page technologies too. The implemen-
tation uses the MySQL DBMS, but any other DBMS can be used
instead.

Listing 1: select.jsp

1 <%@ page import="java.sql.*" %>
2 <%try{
3 Class.forName("org.gjt.mm.mysql.Driver").

newInstance();
4 java.sql.Connection conn;
5 conn = DriverManager.getConnection(
6 "jdbc:mysql://localhost/database?user=login&

password=pass");
7 try {
8 Statement st = conn.createStatement();
9 ResultSet rs =

10 st.executeQuery("select name,email,message
from guestbook");

11 if (rs.next() {%>
12 <!--BEGIN-CONTENT-VIEW-------------------------->
13 <table>
14 <%do {%>
15 <tr><td>Visitor:<a href=’mailto:

<%=rs.getString("email")%>’>
16 <%=rs.getString("name")%></td></tr>
17 <tr><td><%=rs.getString("message")%></td></tr>
18 <%} while (rs.next());%>
19 </table>
20 <!--END-CONTENT-VIEW---------------------------->
21 <%} else {%>
22 <!--BEGIN-NO-RECORDS-VIEW----------------------->
23 Guest book is empty.
24 <!--END-NO-RECORDS-VIEW------------------------->
25 <%}
26 } finally {conn.close();}
27 } catch (Exception e) {%>
28 <!--BEGIN-SERVICE-NOT-AVAILABLE-VIEW------------>
29 Server error: <%=e.getMessage()%>
30 <!--END-SERVICE-NOT-AVAILABLE-VIEW-------------->
31 <%}%>

To process a request, the page loads the MySQL JDBC driver
(line 3), establishes a connection to the database (lines 4–6),
obtains the content of the guestbook table (lines 8–10),
and eventually closes the database connection (line 26).

The set of messages selected from the guestbook table is
assigned to rs (line 9), a variable of type java.sql.Result-
Set. If rs represents a non-empty set of records, the page re-
sponds with the CONTENT view (lines 12–20). The CON-
TENT view renders each record in the rs record set as an
HTML table row (lines 14–18). The view accesses the rs
variable via Java scriplets.

If rs contains no messages, then the NO RECORDS view
(lines 22–24) is returned to the client. In case an exception is
thrown during the processing of a request (for example, if the
JDBC driver was not found or if the JDBC connection was
not established properly), the page responds with the SER-
VICE NOT AVAILABLE view (lines 28–30).

insertForm.jsp (Listing 2): This page displays an HTML
form that the visitor can fill in order to add a new entry.

The insertForm.jsp page is a piece of static HTML
code that returns an HTML form to the client. Each field
in the form specifies one parameter of the request. When
the user submits the form, the request is sent to the doIn-
sert.jsp page, as specified by the action attribute of the
form tag (line 1).

doInsert.jsp (Listing 3): This page obtains the message data
from the request parameters and adds the new message into
the guestbook table.

www.manaraa.com

Listing 2: insertForm.jsp

1 <form action="doInsert.jsp">
2 <table>
3 <tr><th colspan=2>New Message</th></tr>
4 <tr>
5 <td>Your Name</td>
6 <td><input type=text name="name"></td>
7 </tr>
8 <tr>
9 <td>E-mail</td>

10 <td><input type=text name="email"></td>
11 </tr>
12 <tr>
13 <td>Message</td>
14 <td><textarea name="message"></textarea></td>
15 </tr>
16 <tr><td colspan=2><input type=submit></td></tr>
17 </table>
18 </form>

Listing 3: doInsert.jsp

1 <%@ page import="java.sql.*" %>
2 <%try{
3 Class.forName("org.gjt.mm.mysql.Driver").

newInstance();
4 java.sql.Connection conn;
5 conn = DriverManager.getConnection(
6 "jdbc:mysql://localhost/database?user=login&

password=pass");
7 try {
8 PreparedStatement pst = conn.prepareStatement
9 ("insert into guestbook (name,email,message)

values (?,?,?)");
10 pst.setString(1,request.getParameter("name"));
11 pst.setString(2,request.getParameter("email"));
12 pst.setString(3,request.getParameter("message"));
13 pst.execute();%>
14 <!--BEGIN-SUCCESS-VIEW-------------------------->
15 Message was successfully added
16 <!--END-SUCCESS-VIEW---------------------------->
17 <%} finally {conn.close();}
18 } catch (Exception e) {%>
19 <!--BEGIN-FAIL-VIEW----------------------------->
20 Server error: <%=e.getMessage()%>
21 <!--END-FAIL-VIEW------------------------------->
22 <%}%>

The request processing logic steps include loading the MySQL
JDBC driver (line 3), establishing a connection to the database
(lines 5–6), constructing and executing an SQL insert state-
ment (lines 8–13), and finally closing the database connec-
tion (line 17).
Normally, the page responds with the SUCCESS view (lines
14–16). In case of an exception, caused by a faulty request
parameter or a server-side failure (e.g., when the driver is
not found or the connection cannot be established) the FAIL
view (lines 19–21) is returned to the client instead.

The structure of the guestbook table is specified in SQL:

create.sql (Listing 4): The table has four columns: id, name,
email, and message. The id column is the primary key.
The name and email columns store the visitor’s name and
email, respectively. The message column is a placeholder
for guestbook messages. The name and email columns al-
low to store arrays of characters of variable length with a
maximum length of 50 characters. The message column
stores textual data and is limited to 64K.

Listing 4: create.sql

1 create table guestbook (
2 id int auto_increment primary key,
3 name varchar(50),
4 email varchar(50),
5 message text)

The guestbook example is a simplified version of a real guest-
book application. First, it has just three fields. A general web appli-
cation may have dozens of fields [20]. Second, doInsert.jsp
doesn’t validate the fields’ values. A professional web application
should check when a new record is added whether or not the fields
were properly entered. Third, insertForm.jsp contains only
static HTML code, and the form is used only for insert. Poten-
tially, insertForm.jsp could have also been used as a return
form, using dynamic code to highlight any ill-filled field, in case
doInsert.jsp detects a form field that was improperly filled.

Nevertheless, the guestbook example is very close to a real-life
application code and sufficient for illustrating the typical problems
in writing web applications in today’s popular dynamic page tech-
nologies, such as ASP, JSP, PhP, etc. Moreover, the guestbook in-
teraction with the server-side database is typical to many similar
applications, such as a news server, a repository of publications, a
photo gallery, and the like.

2.1 Tangled Code
The guestbook example highlights four typical application con-

cerns, three of which result in tangled code:

� Functionality. The functionality concern is a part of the page
logic that specifies the set of server-side operations to be per-
formed upon receipt of a client request.

� Presentation. The presentation concern is the “look and feel”
of the page. It is the user-interface (UI) that a web applica-
tion provides to its clients, i.e., all the views with which the
page can respond.

�
Control. The control concern is a part of the page logic that
specifies high-level control flow decisions. Based on the re-
quest and server state, the control logic defines what action
to take next. It manages both functionality (what operation
to perform) and presentation (what view to include in the re-
sponse).

2.2 Scattered Code
The fourth and most fundamental concern results in scattered

code:� Structure. The structure concern of a web application re-
lates to any knowledge about structure that is used by the
web application to process HTTP requests and generate a re-
sponse. As a layer between the HTTP and the server-side
data and functionality, a web application expects that both
the request parameters and the underlying resource satisfy
certain structural requirements. This kind of knowledge al-
lows web applications to convert HTTP requests into server-
side operations and, conversely, generate a response reflect-
ing the resource state. More specifically, the structure con-
cern comprises all expressions in the web application code
that refer to structural features of either the request param-
eters or of the underlying resource.

www.manaraa.com

Dynamic

Resource

Dynamic

Static

Inter-crosscutting

Intra-crosscutting �
No intra-crosscutting

Intra-crosscutting �
Page 	
�
�

Page �
Page �

Figure 2: Crosscutting in web application code

3. CONSEQUENCES OF CROSSCUTTING
The guestbook code example reveals two distinct patterns of

crosscutting concerns, namely intra-crosscutting and inter-crosscut-
ting. The tangling of functionality, presentation, and control within
a single dynamic page is a result of intra-crosscutting of the appli-
cation’s concerns. The scattering of structure across functionality
and presentation and across pages is a result of inter-crosscutting.

Figure 2 depicts the relationship between intra- and inter-crosscut-
ting. Intra-crosscutting affects only dynamic pages. Each instance
of intra-crosscutting is scoped within a single dynamic web page
and does not affect parallel pages. For example, changes to Page �
would not affect the intra-crosscutting in pages Page � , ���� ,Page 	 ,
and vise versa. Intra-crosscutting is a shortcoming of dynamic
pages by design, and depends only upon the specific functionality,
presentation, and control code within the affected page.

Inter-crosscutting, on the other hand, reflects and depends upon
the underlying resource structure. Inter-crosscutting affects most
of (sometimes all) the application pages, both dynamic and static.
Structural modifications normally affect inter-crosscutting and lead
to multiple changes across the application files.

Inter-crosscutting and intra-crosscutting are orthogonal. Intra-
crosscutting deals only with the presentation, functionality, and
control concerns, ignoring the structure concern entirely. Inter-
crosscutting deals with the intersection between the application’s
structure, functionality, and presentation concerns, regardless of
whether the functionality and presentation are tangled or not.

The rest of this section analyzes the consequence and possible
remedy for each kind of crosscutting.

3.1 Intra-crosscutting
Intra-crosscutting is illustrated by the background shades in List-

ings 1 and 3. The code in select.jsp and doInsert.jsp
consists of tangled pieces of presentation, functionality, and con-
trol code.

Intra-crosscutting occurs in dynamic pages that contain both func-
tionality and presentation code. Static web pages (written entirely
in HTML/XML) are not affected by intra-crosscutting since they
contain only presentation code. For example, insertForm.jsp
(Listing 2) contains only HTML code and thus free of intra-crosscut-
ting.

Furthermore, the corresponding concerns in select.jsp and
doInsert.jsp are independent of each other. The scope of each
instance of the three concerns is contained within a single dynamic

page. Consequently, intra-crosscutting is an individual property of
a particular dynamic page.

Intra-crosscutting results in a strong coupling between presenta-
tion, functionality, and control. This kind of coupling drastically
increases the dependency between different development groups
resulting in high development and maintenance cost. Consider re-
designing the user interface, a common task in both development
and maintenance stages. During redesign even the recovering from
an occasional typo in the embedded Java code is beyond the abil-
ity of a web designer. As a result, a web programmer must be
involved. Moreover, tangled code is more difficult to read and un-
derstand even for an experienced web developer.

Intra-crosscutting is a well-known problem in dynamic pages.
This problem triggered the application of the MVC design pattern
[10] to web development. Apache Struts is a web development
framework that implements the MVC model. The MVC web model
imposes design-level restrictions that allow to achieve a clean sep-
aration between the presentation, functional and control concerns.

3.2 Inter-crosscutting
Inter-crosscutting is demonstrated in the guestbook example code

by the highlighted fragments of structure-related code that are scat-
tered throughout the application files (listings 1, 2, 3, and 4).

In comparison to intra-crosscutting, inter-crosscutting is a more
severe problem, for the following reasons. First, the inter-crosscut-
ting scope cuts across page boundaries and can occur in multiple
pages. In the guestbook example, expressions related to structural
elements (name, email, and message) appear in all pages: in-
sertForm.jsp, doInsert.jsp, and select.jsp. More
generally, pages interacting with or providing an interface to the
same underlying resource must be kept in sync with the resource’s
structure. Consequently, the structure concern cuts across all such
pages.

Second, inter-crosscutting affects static pages as well as dynamic
pages. For example, insertForm.jsp (Listing 2) is a static
page but contains a set of highlighted structure-related code frag-
ments.

Third, the spread of inter-crosscutting is less regular than intra-
crosscutting. The structure concern can occur within a page in one,
two, or more places, cutting across either functionality, presenta-
tion, or both, and expressed in different syntactical forms. For ex-
ample, expressions related to the email field occur twice in the
presentation code of insertForm.jsp (Listing 2, lines 9 and
10), once in the presentation code, once in the functionality code of
select.jsp (Listing 1, lines 10 and 15), and twice in the func-
tionality code of doInsert.jsp (Listing 3, lines 9 and 11).

Inter-crosscutting reveals a strong dependency of web applica-
tion code on the structure concern. Structure is intertwined with the
functionality and presentation code in a quite complicated manner.
The structure concern is a rigid skeleton that cross-cuts multiple
application files coupling the web application to a particular un-
derlying resource structure. Having such a skeleton in the code
results in a high application assembly cost, in a high development
and maintenance cost, and in loss of reuse opportunities.

3.3 High Application Assembly Cost
The web application is a network of physical modules (pages),

connected through various available mechanisms (request param-
eters, cookies, JSP page scope, session or application context at-
tributes, etc.) Independent of the particular communication mecha-
nism, the protocol of communication normally relies on the appli-
cation’s structure concern.

For example, the functionality code in doInsert.jsp (List-

www.manaraa.com

ing 3) and the presentation view specified in insertForm.jsp
(Listing 2) communicate through HTTP request parameters. The
communication protocol is specified via three parameters: name,
email, and message. For each parameter, a field is declared in
the HTML form (insertForm.jsp, lines 6, 10, and 14 in List-
ing 2). The HTTP request is received and read in doInsert.jsp
(lines 10-12 in Listing 3). Expressions implementing the commu-
nication between insertForm.jsp and doInsert.jsp rely
upon the structure application concern.

During the application assembly stage developers ensure correct
and reliable communication between the application parts. Scat-
tered structural elements hinder the assembly by requiring a com-
plex weaving operation (weaving of the structure concern into the
application code). Complex weaving increases assembly costs both
directly (weaving takes developer’s time and effort) and indirectly
(since weaving is error-prone, additional application testing is re-
quired to ensure correctness). Moreover, since weaving affects both
functionality and presentation code, it requires a collaborative ef-
fort of both web designers and web programmers. As a conse-
quence, the weaving becomes the bottleneck of the web application
assembly stage.

3.4 High Development and Maintenance Cost
During web application development and maintenance, structure

changes are a very common requirement. Unlike the guestbook
example, a typical web application usually has many fields. The
more fields the more likely the customer would ask for changes in
some of them.

Changing the existing structure generally requires two opera-
tions: weaving and unweaving. The weaving operation is identi-
cal to the one performed during application assembly. Unweaving
is the opposite of weaving: it requires careful removal of obso-
lete structural information from the application code. Even though
removing requires less skills than adding, the complexity of the un-
weaving operation is close to that of weaving. The developer must
go over all affected locations in the code and carefully edit them.

For example, just removing the email field from the guestbook
example would require to remove lines 8–11 from insertForm-
.jsp (Listing 2), to edit lines 10 and 15 in select.jsp (List-
ing 1), and to edit line 9 and to remove line 11 in doInsert.jsp
(Listing 3). Due to inter-crosscutting, the weaving and unweaving
operations are expensive, significantly increasing the application
development and maintenance cost.

3.5 Loss of Reuse Opportunities
When the application code is written against a particular struc-

ture in mind, its reusability is close to impossible. The problem
of loss of reuse opportunities is particularly acute in web applica-
tion development: most web applications provide similar or identi-
cal services (records retrieval, record insertion, record update, etc.)
and differ only in structure. Yet, to reuse code, developers need
to perform complex weaving and unweaving operations, and the
overhead quickly out-weights the benefits of reuse thus hindering
product-line development. As a result, instead of reusing exist-
ing code, developers often end up writing a new application from
scratch, spending much time and efforts to recreate very familiar
functionality.

Despite its obvious severity, no comprehensive solution for the
inter-crosscutting problem exists to date. Current web develop-
ment technologies and models fail to identify and address inter-
crosscutting, leaving developers to cope alone with the problem.
Having no institutional support, advanced developers sometimes
build their own ad-hoc tools to tackle specific cases. Typical ex-

amples include generating dynamic pages (e.g., Wizard [25], Au-
toWeb [9]) for inserting a record, retrieving records, and updating
a record. Ad-hoc solutions may significantly improve development
efficiency for a specific task (e.g., [1]). However, they fail to solve
inter-crosscutting in general.

4. THE XP MODEL
Solving the inter-crosscutting problem is crucial for building web

applications more efficiently. In this section we present an inter-
mediate web model called Extension Point (XP) for localizing the
structure concern. The XP model allows web programmers to cre-
ate structure-free applications that can be adapted to various struc-
tural requirements. The WebJinn/XP framework (Section 4.2) is an
implementation of the XP model. In Section 5 we then build on the
XP model in presenting the complete domain-driven web develop-
ment model and the WebJinn/DDD framework.

4.1 Unweaving Inter-Crosscutting
At the code level, the structure concern is represented by a set

of structure-dependent code fragments scattered across the appli-
cation. While scattered, these fragments typically appear in clus-
ters. Each structure-dependent code fragment belongs to exactly
one cluster (some clusters may be singletons). All fragments within
a cluster implement the same semantic operation. For example, in
the guestbook application there are four clusters corresponding to
four semantic operations:

� Construction of the SQL select statement: Line 10 in List-
ing 1 (select.jsp).

� Rendering the guest book messages: Lines 15–17 in List-
ing 1 (select.jsp).

� Construction of the HTML-based insert form: Lines 5–6, 9–
10, and 13–14 in Listing 2 (insertForm.jsp).

� Construction of the SQL insert statement: Lines 9–12 in List-
ing 3 (doInsert.jsp).

The main insight behind the XP model is that a complete sepa-
ration between application code and inter-crosscutting structure is
achievable by substituting the structure-dependent clusters with ex-
tension points. An extension point marks a “hole” in the code to
be later “filled” with structure-dependent fragments. An applica-
tion that declares extension points in place of structure-dependent
clusters becomes structure-free and is called an abstract web appli-
cation.

The XP model allows to develop abstract applications and struc-
ture modules separately. The concrete application is compiled from
an abstract application and a structure module. We refer to this
compiler as the weaving function. The weaving function � takes
an abstract application � and a structure module � as input and
produces the concrete executable application � by weaving clus-
ters found in � into the corresponding extension points declared
in � :

��������������� (1)

The XP model is illustrated in Figure 3. The figure shows an
abstract application � with four extension points. The structure
module � contains four clusters of code fragments corresponding
to the extension points. The executable application � is assembled
by weaving the content of � into the abstract application � .

www.manaraa.com

�

�

!

Figure 3: XP model

4.2 The WebJinn/XP Framework
XP is the abstract model for resolving inter-crosscutting. The

WebJinn/XP framework is a concrete implementation of the XP
model, providing a precise specification for � , � , and � .

To explain the working of the WebJinn/XP framework, three ad-
ditional technical terms are needed, namely field, template, and
group.

� Field. At the logical level, � comprises a set of logical fields.
In the guestbook application, for example, the logical fields
are: name, email, and message. The code fragments scat-
tered across the application are the projection of these fields
onto the code level. For example, the email logical field is
dispersed throughout the application code. Furthermore, a
logical field projects code fragments with different syntac-
tical forms. For example, the email projections have var-
ious forms: email, E-mail, rs.getString("email"),
and <input type=text name="email">. To model this,
the WebJinn/XP framework introduces a field data struc-
ture with an array of named attributes. Each attribute asso-
ciates a syntactical form with the logical field it represents.

� Template. A further study of the code fragments reveals that
in most cases projections of different fields that fall in the
same cluster not only implement a similar logical operation,
but also have a similar syntactical form. For example, in the
construction of the insert form (Listing 2), three fields are
involved, name, email, and message, all of which follow
the same template [5]:

<tr>
<td> display attribute </td>
<td> input attribute </td>
</tr>

Consequently, a cluster can be succinctly represented as a
pair: " �$#&%('*),+ �.-��0/ %1324'*5 / %76 (2)

The template is parameterized over field attributes but spec-
ifies no knowledge of concrete structure. As a structure-free
abstraction, the template is used in the WebJinn/XP frame-
work to implement an extension point. It specifies the se-
mantic operation represented by the extension point to be
performed for each field in the sequence of fields.

Listing 5: DTD for specifying structure

1 <!ELEMENT ddd:structure (ddd:fields, ddd:groups)>
2 <!ELEMENT ddd:fields (ddd:field*)>
3 <!ELEMENT ddd:field (ddd:attribute*)>
4 <!ELEMENT ddd:attribute EMPTY>
5 <!ELEMENT ddd:groups (ddd:group*)>
6 <!ELEMENT ddd:group (ddd:fieldref*)>
7 <!ELEMENT ddd:fieldref EMPTY>
8 <!ATTLIST ddd:field
9 name ID #REQUIRED>

10 <!ATTLIST ddd:attribute
11 name CDATA #REQUIRED
12 value CDATA #REQUIRED>
13 <!ATTLIST ddd:group
14 name ID #REQUIRED>
15 <!ATTLIST ddd:fieldref
16 name IDREF #REQUIRED>

� Group. So far the representation of a cluster contains both a
structure-dependent part (sequence of fields) and a structure-
free part (template). To avoid hard-coding structure-dependent
elements in the abstract application, groups are used. A group
denotes a sequence of fields and is uniquely defined in the
structure module. Each extension point is represented as a
pair: " 879�:,; 2 �(/ %1324'*5 / %,6 (3)

A group in an abstract application code is a reference to the
group defined in the structure module. The group reference
is used for obtaining the field set, which is required during
application assembly to weave the executable code.

4.3 Implementation Details
The structure module is specified in an XML file that conforms

to the Document Type Definition (DTD [17]) shown in Listing 5. A
<ddd:structure> (line 1) tag is the root of the XML definition.
It has two children, <ddd:fields> (line 2) and <ddd:groups>
(line 5). The first stores a set of fields specified via <ddd:field>
(line 3) tags, and the second contains a set of groups defined via
<ddd:group> (line 6) tags. A set of <ddd:attribute> (line 4)
tags, hosted within the body of a corresponding <ddd:field> tag,
specify the attributes of a field. A group includes fields by reference
using a <ddd:fieldref> (line 7) tag.

The XML file structure.xml (Listing 6) defines the struc-
ture-dependent code fragments found in the guestbook’s insert-
Form.jsp (Listing 2) and doInsert.jsp (Listing 3) pages.
The three fields are in the field set: name (lines 4–9), email (lines
10–15), and message (lines 16–21). The four attributes column,
request, display, and input are specified for each of the fields.
The group set consists of two groups, namely insertFormFields
(lines 24–28) and ddd.InsertExtension (lines 29–33). Each
group includes all the fields.

The WebJinn/XP framework distinguish between textual and func-
tional extension points. Within presentation code, textual extension
points are used. To decouple structure and functionality, functional
extension points are used.

4.3.1 Textual extension point
Textual extension points are declared using XML format. The

DTD for a textual extension point declaration is presented in List-
ing 7. The <ddd:extension_point> (lines 1–2) tag declares a
textual extension point. The group attribute (lines 7–8) of the tag
is a reference to a group defined in a structure module. A template
is defined within the body of a <ddd:template> (lines 3–4) tag,

www.manaraa.com

Listing 6: structure.xml

1 <?xml version="1.0" encoding="UTF-8"?>
2 <ddd:structure>
3 <ddd:fields>
4 <ddd:field name="name">
5 <ddd:attribute name="column" value="name"/>
6 <ddd:attribute name="request" value="name"/>
7 <ddd:attribute name="display" value="Your Name"

/>
8 <ddd:attribute name="input" value="<input type=

text name=’name’>"/>
9 </ddd:field>

10 <ddd:field name="email">
11 <ddd:attribute name="column" value="email"/>
12 <ddd:attribute name="request" value="email"/>
13 <ddd:attribute name="display" value="E-mail"/>
14 <ddd:attribute name="input" value="<input type=

text name=’email’>"/>
15 </ddd:field>
16 <ddd:field name="message">
17 <ddd:attribute name="column" value="message"/>
18 <ddd:attribute name="request" value="message"/>
19 <ddd:attribute name="display" value="Message"/>
20 <ddd:attribute name="input" value="<textarea

name=’message’></textarea>"/>
21 </ddd:field>
22 </ddd:fields>
23 <ddd:groups>
24 <ddd:group name="insertFormFields">
25 <ddd:fieldref name="name"/>
26 <ddd:fieldref name="email"/>
27 <ddd:fieldref name="message"/>
28 </ddd:group>
29 <ddd:group name="ddd.InsertExtension">
30 <ddd:fieldref name="name"/>
31 <ddd:fieldref name="email"/>
32 <ddd:fieldref name="message"/>
33 </ddd:group>
34 </ddd:groups>
35 </ddd:structure>

Listing 7: DTD for textual extension point

1 <!ELEMENT ddd:extension_point
2 (ddd:template, ddd:generated?)>
3 <!ELEMENT ddd:template
4 (#PCDATA | ddd:attribute)*>
5 <!ELEMENT ddd:attribute EMPTY>
6 <!ELEMENT ddd:generated ANY>
7 <!ATTLIST ddd:extension_point
8 group CDATA #REQUIRED>
9 <!ATTLIST ddd:attribute

10 name CDATA #REQUIRED>

the child of the <ddd:extension_point> tag. A template rep-
resents a string that includes several <ddd:attribute> (line 5)
tags, each one defining a hook. The hooks are replaced with actual
values of corresponding field attributes when the field is weaved
into the extension point. The <ddd:generated> (line 6) tag is
optional. It doesn’t belong to the extension point definition and is
used as a placeholder for expressions generated by the weaver dur-
ing application assembly. An example of the <ddd:generated>
tag is found in Listing 13 (lines 11–24).

An example of using a textual extension point is shown in List-
ing 8. The extension point (lines 4–11) describes the rendering of
the insert form in a structure-free manner. Its structure-dependent
counterpart is defined in insertForm.jsp (Listing 2). The ex-
tension point is associated with the insertFormFields group (line

Listing 8: insertForm.jsp

1 <form action="doInsert.jsp">
2 <table>
3 <tr><th colspan=2>New Message</th></tr>
4 <ddd:extension point group="insertFormFields">
5 <ddd:template>
6 <tr>
7 <td><ddd:attribute name="display"/></td>
8 <td><ddd:attribute name="input"/></td>
9 </tr>

10 </ddd:template>
11 </ddd:extension point>
12 <tr><td colspan=2><input type=submit></td></tr>
13 </table>
14 </form>

Listing 9: Extension.java

1 package edu.neu.ccs.ddd;
2 public interface Extension {
3 void doAction() throws Exception;
4 }

4) by the the group attribute in the <ddd:extension_point> tag.
The <ddd:template> tag specifies the template (lines 5–10). The
template defines two attribute hooks via <ddd:attribute> tags:
display (line 7) and input (line 8).

4.3.2 Functional extension point
Functional extension points are defined using a specific object-

oriented framework. In this framework, each extension point has
a corresponding extension class implementing the edu.neu.ccs-
.ddd.Extension interface. This interface, shown in Listing 9,
defines a single void doAction() method (line 3).

The extension point itself is specified in the functionality code
as a set of call sites targeting the corresponding extension class.
Normally, it includes the instantiation of the extension class, the
initialization of the constructed instance, a call to doAction, and
the acquisition of the result. The implementation of the doAction
method encapsulates all structure-dependent operations associated
with the extension point.

The structure-independent equivalent of doInsert.jsp (List-
ing 3) is presented in Listing 10. The ddd.InsertExtension
class is an extension class for the extension point (lines 8–15).
The code first creates an extension class instance (lines 8–9), cus-
tomizes it (lines 10–12), invokes doAction (line 13), and acquires
the result via prepareStatement (line 15). The last method call
returns an instance of java.sql.PreparedStatement that rep-
resents a ready-to-execute insert SQL query constructed for a
particular guestbook database table.

While extension classes decouple structure from functionality,
the problem of inter-crosscutting remains: the structure concern
still cross-cuts the extension class code. To unweave the structure
concern from the extension class code, the WebJinn/XP framework
provides a Java API for accessing the application’s structure mod-
ule. The framework forces all extension classes to use this API as
the only source of structure meta-data.

To enforce this implementation strategy for extension classes,
the WebJinn/XP framework provides a NormalizedExtension
base class (Listing 11). NormalizedExtension defines two im-
portant mechanisms. First, it specifies the relation between the ex-
tension classes and the structure groups (lines 17–18). Each exten-
sion class instance is associated on construction with an API Group
object using the class name as the group name. Second, it specifies

www.manaraa.com

Listing 10: doInsert.jsp

1 <%@ page import="java.sql.*" %>
2 <%try{
3 Class.forName("org.gjt.mm.mysql.Driver").

newInstance();
4 java.sql.Connection conn;
5 conn = DriverManager.getConnection(
6 "jdbc:mysql://localhost/database?user=login&

password=pass");
7 try {
8 ddd.InsertExtension extension =
9 new ddd.InsertExtension();

10 extension.setConnection(con);
11 extension.setRequest(request);
12 extension.setTableName("guestbook");
13 extension.doAction();
14 PreparedStatement pst =
15 extension.prepareStatement();
16 pst.execute();%>
17 <!--BEGIN-SUCCESS-VIEW-------------------------->
18 Message was successfully added
19 <!--END-SUCCESS-VIEW---------------------------->
20 <%} finally {conn.close();}
21 } catch (Exception e) {%>
22 <!--BEGIN-FAIL-VIEW----------------------------->
23 Server error: <%=e.getMessage()%>
24 <!--END-FAIL-VIEW------------------------------->
25 <%}%>

Listing 11: NormalizedExtension.java

1 public abstract class NormalizedExtension
2 implements Extension {
3

4 public void doAction() throws Exception {
5 Field[] fields = group.getFields();
6 for (int i=0;i<fields.length;i++)
7 doFieldAction(fields[i]);
8 }
9

10 protected Group group;
11

12 protected String getGroupName() {
13 return getClass().getName();
14 }
15

16 protected NormalizedExtension() {
17 group = MetaDataProvider.getMetaData().
18 getGroup(getGroupName());
19 }
20

21 protected abstract void doFieldAction(Field
field)

22 throws Exception;
23 }

a structure-dependent operation as a sequence of operations, one
per field in the group (lines 5–7). The doFieldAction(Field
field) method is a placeholder for the template to be instantiated
(executed) for each field in the group.

The ddd.InsertExtension class (Listing 12) inherits from the
class NormalizedExtension. An InsertExtension instance
is associated, on construction, with the ddd.InsertExtension
group defined in the structure.xml file (Listing 6). Further-
more, the doFieldAction method accesses two field attributes
(lines 18–19), namely column and request. The doFieldAction
method is called for each field in the ddd.InsertExtension group.
The field’s attributes are retrieved and stored, and later used to con-
struct the SQL insert statement (generateSQL, lines 37–47).

Listing 12: InsertExtension.java

1 package ddd;
2 //part of text omitted...
3

4 public class InsertExtension
5 extends NormalizedExtension {
6

7 / <�< Creates, prepares and returns PreparedStatement < /
8 public PreparedStatement prepareStatement()

throws Exception {
9 PreparedStatement result = conn.

prepareStatement(generateSQL());
10 for (int i=0;i<values.size();i++)
11 result.setString(i+1,(String)values.get(i));
12 return result;
13 }
14

15 / <�< Saves request parameter value and column name < /
16 protected void doFieldAction(Field field)
17 throws Exception {
18 String columnName=field.getAttribute("column");
19 String paramName=field.getAttribute("request");
20 columnNames.add(columnName);
21 values.add(request.getParameter(paramName));
22 }
23

24 / <�< Set by clients via setter methods < /
25 private String tableName;
26 private Connection conn;
27 private HttpServletRequest request;
28

29 / <�< Internal instance variables < /
30 private ArrayList columnNames=new ArrayList();
31 private ArrayList values=new ArrayList();
32 // ...
33 // Setter methods for tableName, conn and request
34 // ...
35

36 / <�< Generates SQL string < /
37 private String generateSQL() {
38 int count = columnNames.size();
39 String columns = (String)columnNames.get(0);
40 String vals = "?";
41 for (int i=1;i<count;i++) {
42 columns = columns+","+(String)columnNames.get

(i);
43 vals = vals + ",?";
44 }
45 return "Insert into "+tableName+
46 " ("+columns+") values ("+vals+")";
47 }
48 }

The ddd.InsertExtension class is hence structure-free. The
structure of the SQL statement to be constructed is not hard-coded.
It is obtained using an API at run-time.

The WebJinn/XP framework supports dynamic weaving. It al-
lows to re-weave the structure module into the abstract application
at run-time. The implementations details, however, differ for tex-
tual and functional extension points.

4.3.3 Weaving into textual extension points
Weaving into textual extension points changes the application’s

source code. The group attribute of an extension point tag asso-
ciates the textual extension point with a group defined in the struc-
ture module. Once the weaver has both the extension point and
the group, it combines them by instantiating the extension point
template for each field in the group. Instantiation means replac-
ing hooks (defined via <ddd:attribute> tag) that are found in

www.manaraa.com

Listing 13: weaving result

1 <form action="doInsert.jsp">
2 <table>
3 <tr><th colspan=2>New Message</th></tr>
4 <ddd:extension point group="insertFormFields">
5 <ddd:template>
6 <tr>
7 <td><ddd:attribute name="display"/></td>
8 <td><ddd:attribute name="input"/></td>
9 </tr>

10 </ddd:template>
11 <ddd:generated>
12 <tr>
13 <td>Your Name</td>
14 <td><input type=text name=’name’></td>
15 </tr>
16 <tr>
17 <td>E-mail</td>
18 <td><input type=text name=’email’></td>
19 </tr>
20 <tr>
21 <td>Message</td>
22 <td><textarea name=’message’></textarea></td>
23 </tr>
24 </ddd:generated>
25 </ddd:extension point>
26 <tr><td colspan=2><input type=submit></td></tr>
27 </table>
28 </form>

the template with appropriate field attribute values. The result of
weaving is wrapped into <ddd:generated> start and end tags and
is placed into the body of the host extension point tag.

Consider again the structure module in Listing 6 and the ex-
tension point in Listing 8. The <ddd:extension_point> tag’s
group attribute (Listing 8, line 4) instructs the weaver that the ex-
tension point should be associated with the insertFormFields
group. This group, defined in structure.xml (Listing 6, lines
24–28), contains three fields, namely name, email, and message.
The weaver instantiates the template (Listing 8, lines 5–10) by re-
placing attribute tags named display and input with the corre-
sponding attribute values for each of the three fields. The instan-
tiated expressions are wrapped with <ddd:generated> tags and
placed into the body of the <ddd:extension_point>. The ex-
tension point and the template tags are left in the code to allow
re-weaving when the structure changes. The result of the weaving
is presented in Listing 13.

Textual extension points are physically located within presenta-
tion code. The weaving affects JSP pages, and since the JSP con-
tainer (server) reflects changes in pages as they occur, the result
of weaving is immediately visible to clients (on the next request).
Hence, weaving into textual extension point is dynamic.

4.3.4 Weaving into functional extension points
The WebJinn/XP framework provides an implementation of the

Java API that allows clients to access structure module content at
run-time. The weaving algorithm for functional extension points is
defined in the NormalizedExtension class (Listing 11, lines 17–
18). Using the MetaDataProvider.getMetaData static method
in the MetaDataProvider class, which exists in the JVM on a
per-application basis, an extension class obtains a MetaData in-
stance for its “enclosing” web application. The MetaData instance
represents a structure module and provides access to its content.
Using the MetaData instance, the extension class then obtains the
appropriate Group object.

Since NormalizedExtension is a base class for most (nor-
mally all) extension classes, weaving structure into functional ex-
tension points means setting up the appropriate MetaData object
to be returned by the MetaDataProvider.getMetaData static
method. This object is updated either at application start-up or
each time the structure is (re)weaved into the application. As a
result, dynamic weaving is achieved.

5. THE DDD MODEL AND WEBJINN
The DDD model combines the MVC and XP models to provide

a unified solution to both intra- and inter-crosscutting. This section
describes the WebJinn/DDD framework that implements the DDD
model. The WebJinn/DDD is a combination of Apache Struts [13,
19, 23, 14] and WebJinn/XP. In order to present WebJinn/DDD, we
first briefly introduce the basics of the Apache Struts/MVC frame-
work.

5.1 The Apache Struts Framework
The Apache Struts/MVC framework organizes the web applica-

tion code in three modules, namely model, view, and controller.

� The model modularizes functionality associated with the un-
derlying resource. It is external to the web application tier
and is merely an abstract interface to the underlying resource.
The model is also used by interactive clients, other than the
web application.

� The view specifies the application’s presentation. It is imple-
mented as a set of JSP pages, also called presentation views.
A presentation view contains only HTML or XML code.

� The controller consists of two subcomponents: controller
servlet and a set of action adapters.

The controller servlet implements the application’s control. It
manages the processing of requests. Upon receipt of an HTTP re-
quest, the controller servlet delegates the processing to an appro-
priate action class. After the action class completes its processing,
the servlet selects an appropriate presentation view to render the
response.

An action class implements the web-tier functionality. First, it
converts request parameters into model terms. Second, it executes
one or more model operations. Third, it converts the results ob-
tained from the model into a form that is appropriate for render-
ing by the presentation views. Communication between the action
classes and the presentation views is implemented on top of the
web-tier facilities (Servlet API).

The structure concern, however, remains scattered across the
view and controller in the Apache Struts framework, inter-cross-
cutting the presentation views and action adapters. To unweave it,
the Apache Struts framework needs to be integrated with the Web-
Jinn/XP framework.

An early version of the WebJinn/DDD consisted of two frame-
works, namely WebJinn/MVC and WebJinn/XP.2 However, to make
WebJinn more accessible, in later versions the WebJinn/MVC frame-
work was replaced with the Apache Struts/MVC framework. The
WebJinn/XP framework was superimposed over the Apache Struts
code to provide a complete separation of the four application con-
cerns.

� The early version of WebJinn was developed in 2001 and predated
the Apache Struts framework.

www.manaraa.com

Request

Response

JSP pages

Controller Model

servlet
Controller Action classes

View Structure

Web−application

Meta−data

Resource

Figure 4: The WebJinn/DDD framework

5.2 The WebJinn/DDD Framework
In the WebJinn/DDD framework, textual extension points are

declared within the presentation views, and functional extension
points within the action classes. The integrated code satisfies both
the Apache Struts and the WebJinn/XP framework specifications.
The WebJinn/DDD architecture is shown in Figure 4.

In order to illustrate the working of the WebJinn/DDD frame-
work, we return to doInsert.jsp (Listing 3) and insert-
Form.jsp (Listing 2), and present these guestbook pages again in
the WebJinn/DDD framework. The presentation of select.jsp
(Listing 1) in WebJinn/DDD is omitted.

5.2.1 Control
The control concern of the guestbook application is specified by

the struts-config.xml file.

struts-config.xml (Listing 14): This file customizes the ap-
plication’s controller servlet by specifying two mapping re-
lations:

(1) Mapping a physical URI to an action class. The map-
ping of physical URIs to action classes associates in-
coming HTTP requests with appropriate action classes.
It is specified within the action-mappings tag body.
Each action tag represents an action class. Mapping
between an action class and a physical URI is specified
by the path attribute of the action tag. For exam-
ple, in struts-config.xml the /insert URI is
mapped to the ddd.InsertAction class.

(2) Mapping a logical URI to a physical URI. Action classes
define logical states of the request processing result.
For example, the insert operation could terminate with
either the “SUCCESS” or “FAIL” states. These logical
states are called logical URIs. A logical URI is returned
to the controller servlet as the result of the action class
execution.
To associate a logical URI with the corresponding pre-
sentation view, the controller servlet is provided with
a logical-to-physical URI mapping. The mapping is
defined via forward tags located in the body of the
action tag: the name and path attributes of a forward
tag denote associated logical and physical URIs. The
“SUCCESS” and “FAIL” logical URIs are mapped in
Listing 14 to the physical URIs /insertSUCCESS.
jsp and /insertFAIL.jsp, respectively.

Listing 14: struts-config.xml

1 <struts-config>
2 ...
3 <action-mappings>
4 <action path="/insert"
5 type="ddd.InsertAction"
6 ... >
7 <forward name="SUCCESS" path="/insertSUCCESS.

jsp"/>
8 <forward name="FAIL" path="/insertFAIL.jsp"/>
9 </action>

10 </action-mappings>
11 </struts-config>

Listing 15: insertSUCCESS.jsp

1 <!--BEGIN-SUCCESS-VIEW-------------------------->
2 Message was successfully added
3 <!--END-SUCCESS-VIEW---------------------------->

Listing 16: insertFAIL.jsp

1 <!--BEGIN-FAIL-VIEW----------------------------->
2 Server error: <html:errors/>
3 <!--END-FAIL-VIEW------------------------------->

5.2.2 Presentation
The presentation concern consists of three views: insertSUC-

CESS.jsp, insertFAIL.jsp, and insertForm.jsp.

insertSUCCESS.jsp (Listing 15): This view presents success-
ful completion of the message-insertion operation. The view
is included into the response when the ddd.InsertAction
action adapter returns the “SUCCESS” logical URI.

insertFAIL.jsp (Listing 16): This view presents message-
insertion failure. The view is returned to the client when
the ddd.InsertAction action adapter returns the “FAIL”
logical URI.

The view insertFAIL.jsp uses an html:errors tag to
render errors that occurred in the action class code. This tag
is a member of the Apache Struts tag library. The tag library
is used to remove Java scriplets from presentation code. The
library tags provide an XML interface to common pieces of
Java functionality that occur within the presentation code.

insertForm.jsp: In the application that is based on exten-
sion points, this view is identical to the insertForm.jsp
code shown in Listing 8 except for the first and last lines.
In the first line, form action="doInsert.jsp" is substi-
tuted with html:form action="/insert", and form is
replaced with html:form in the last line. These changes are
required to represent the HTML form in the Apache Struts
format.

5.2.3 Functionality
The functionality concern is specified by the ddd.InsertAction

action class.

InsertAction.java (Listing 17): The action class is inte-
grated into the WebJinn/XP framework via a functional ex-
tension point associated with the ddd.InsertExtension
extension class (Listing 10). The ddd.InsertAction class
is completely separated from the structure concern.

www.manaraa.com

Listing 17: InsertAction.java

1 package ddd;
2 public class InsertAction extends Action {
3 public ActionForward execute(
4 ActionMapping mapping,
5 ActionForm form,
6 HttpServletRequest request,
7 HttpServletResponse response)
8 throws java.lang.Exception {
9 try{

10 Connection con;
11 // ...
12 // Loading SQL driver and establishing database connection
13 // ...
14 MetaData metaData = MetaDataProvider.

getMetaData();
15 try{
16 InsertExtension extension =
17 new InsertExtension();
18 extension.setConnection(con);
19 extension.setRequest(request);
20 extension.setTableName("guestbook");
21 extension.doAction();
22 PreparedStatement pst =
23 extension.prepareStatement();
24 pst.execute();
25 } finally {conn.close();}
26 return mapping.findForward("SUCCESS");
27 } catch (Exception ex) {
28 ActionErrors err = new ActionErrors();
29 err.add(ActionErrors.GLOBAL_ERROR,
30 new ActionError("error",ex.getMessage()));
31 request.setAttribute(Globals.ERROR_KEY,err);
32 return mapping.findForward("FAIL");
33 }
34 }

5.2.4 Structure
Finally, the structure concern is specified in the structure.xml

file.

structure.xml: The revised structure.xml is similar to
the code shown in Listing 6, with the following minor changes.
The input attribute of the fields name, email, and message
should be respectively changed to <html:text property=
’name’/>, to <html:text property=’email’/>, and to
<html:textarea property= ’message’/>. Similar to
the case with insertForm.jsp, these changes are required
to conform with the Apache Struts format.

The WebJinn/DDD framework was used in developing intranet
sites as well as a number of commercial internet web sites (e.g.,
psn.saturn-r.ru,keramika.perm.ru,robi.perm.ru,
client.saturn-r.ru, marketing.perm.ru). The list of
WebJinn/DDD based applications includes a forum, a guestbook, a
news server, a FAQ list, a catalogue, a user authorization system,
a file catalogue, and many more. We conclude this section with
a list of benefits and a couple of limitations of the WebJinn/DDD
framework.

5.3 Benefits
Web development with WebJinn/DDD benefits primarily from

new opportunities for reuse in the application code and ease of
adaptability [21]. The WebJinn/DDD framework supports two reuse
mechanisms: reuse through composition and reuse through spe-
cialization. WebJinn/DDD also employs component-based [24, 12]
and product-line [6, 3] software engineering methods to facilitate
rapid development and customization.

� Reuse through composition. Most web applications imple-
ment an identical set of services (e.g., retrieve records, in-
sert record, update record), but their service components are
structure-dependent and therefore normally cannot be reused
across applications. In the DDD model, however, these com-
ponents become structure-free and interchangeable. The We-
bJinn/DDD framework allows different web applications to
be composed from the same library of service components.� Reuse through specialization. Popular web applications (e.g.,
guestbook, forum, news) are in constant demand by new cus-
tomers. Despite the identical desired functionality, the actual
implementations of the same web application that run at dif-
ferent web sites are mostly different due to the site-specific
inter-crosscutting. In the DDD model, however, these struc-
tural differences are customizable. The WebJinn/DDD frame-
work allows the same web base-application to be easily spe-
cialized for different clients.� Reusable libraries. WebJinn/DDD employs two libraries (Fig-
ure 5). Widely used application services are defined in a
component library. A component is a structure-free service
implemented as a WebJinn/DDD abstract application. An ap-
plication template library specifies families of common web
applications. An application template consists of one or more
components from the component library. An executable ap-
plication is produced from an application template by weav-
ing in appropriate structure-specific code. Once a component
is written or an application template is assembled, it is added
to the corresponding library and is available for future de-
velopment. As the libraries grow richer, web application de-
velopment in WebJinn/DDD is reduced to just defining new
structure modules. The result is a significant increase of the
web development productivity.� Adaptability. The benefit of reuse differs depending on the
application’s size. WebJinn/DDD has proven to be most valu-
able for medium-size and enterprise applications. For exam-
ple, the real-estate server psn.saturn-r.ru provides ac-
cess to five database tables, each managing different real-
estate data. To access just one of them, 12 services are pro-
vided: 3 public, 4 user-personalized, and 5 administrative.
The implementation of these 12 services includes a total of
25 files. As the application functionality stabilizes, frequent
database structure changes initiated by the customer become
the main problem. Initially, the code was written using the
WebJinn/MVC framework, and changes in one table (e.g.,
adding or removing a field) required up to 2 hours of work.
After reorganizing the code and migrating to the WebJin-
n/DDD framework, structural updates took little effort: less
than a minute (just 2 mouse clicks) for removing a field and
about 3-5 minutes of work for adding a field. The result is
an enormous increase in efficiency (24 times faster) in per-
forming structure customization tasks. For smaller sized ap-
plications, the benefit is small but still significant. Even for
an application with only 4 to 6 files, structure modifications
take about 5 times faster in the WebJinn/DDD framework.

5.4 Limitations
The implementation of the WebJinn/DDD framework puts cer-

tain limitations on the application code.

� Restricted expressiveness of template-based extension points.
The template representation of a structure-dependent opera-
tion restricts expressiveness. The instantiated code is made

www.manaraa.com

Application
Library of

Templates

1

Product−Line
Development

Component−Based
Development

Executable

Reusable
Library of

Applications

in
cl

ud
e

in
st

an
tia

te

Components C

1 k2j2i21

2T mT1T

1

2C 3C nC

3EE332E
22E

11E
1E EE E

=,=7=

=,=,=

>?>�> >?>�>>�>?>
Figure 5: Web development with WebJinn/DDD

of a collection of expressions that are weaved separately and
independently of each other. It becomes difficult to weave ar-
bitrary complex expressions into extension points. For exam-
ple, consider an extension point describing a where clause of
a select SQL query that includes AND, OR, and NOT op-
erators and is dependent on the request state. Due to the
complex form of this expression, it is currently impossible to
represent it as a template in WebJinn/DDD. However, such
complex expressions are the exception rather than the rule.

� Non-optimized run-time performance. The WebJinn/DDD
framework facilitates structure customizations during appli-
cation code development. Since structure changes are fre-
quent at that stage, it is important that the application reflects
changes immediately. This reason motivated the implemen-
tation of dynamic weaving in WebJinn/DDD.

While improving the flexibility property of the code, dy-
namic weaving affects run-time performance. The perfor-
mance penalty may be crucial for enterprise servers with a
large number of simultaneous users. However, dynamic weav-
ing only affects the functional part, since weaving into pre-
sentation view pages is pseudo-dynamic: the code is weaved
statically and “refreshed” by built-in mechanisms associated
with the JSP container.

6. CONCLUSION
Crosscutting concerns in web development result in tangling and

scattering in the web application code. Intra-crosscutting causes
tangling of functionality, presentation, and control code. Inter-
crosscutting causes scattering of code fragments that reflect struc-
tural features of either the request parameters or the underlying re-
source. While intra-crosscutting can be controlled with the MVC
model, all current web development models, including MVC, fail
to address inter-crosscutting.

The contribution of this paper is in presenting new web applica-
tion development models that solve both forms of crosscutting. The
XP model introduces extension points as place-holders for structure-
dependent code. This enables to develop structure-free abstract
web applications, which can then be tailored to a desired structure.

The DDD model integrates the XP model with the MVC model;
and the WebJinn/DDD framework implements the DDD model to
provide a unified domain driven web development solution for both
intra- and inter-crosscutting. In WebJinn/DDD, it is possible to
create reusable web application components and instantiate an exe-
cutable application from templates of assembled components. Web
application development with WebJinn/DDD significantly increases
web development productivity and reuse.

An interesting direction for future work is to consider WebJin-
n/DDD as an Aspect-Oriented Programming (AOP) [15] tool. The
XP model given in Section 4 is essentially a primitive AOP lan-
guage. In terms of AOP, the abstract application denotes a base
program, the structure module is an aspect, and the weaving func-
tion implements the AOP semantics [16].�

5 � AOP model. An AOP model would be an aspect-oriented
extension of DDD that uses “join points” for extension points
and “advice” for structure-dependent code clusters.

A WebJinn/AOP implementation of the AOP model may resolve
some of the current limitations in WebJinn/DDD. For example, a
better advice model may allow to specify complex expressions to
be weaved into the abstract application. The WebJinn/AOP frame-
work may also include a static weaving mode that would improve
performance characteristics of the executable code. From this per-
spective, WebJinn/DDD is a starting point for a new web domain-
specific AOP language.

We believe that not only could AOP greatly help web develop-
ers to write reusable web applications with minimum effort, but
designing an aspect-oriented web development framework would
improve our understanding of AOP as well.

Acknowledgment
We thank Jonathan Hendler and the anonymous referees for their
valuable comments.

7. REFERENCES
[1] P. Atzeni, G. Mecca, and P. Merialdo. To weave the web. In

International Conference on Very Large Data Bases, pages
206–215, 1997.

[2] D. Axmark, M. Widenius, A. Lentz, P. DuBois, and S. Hinz.
MySQL manual. http:
//www.mysql.com/documentation/index.html.

[3] D. Batory, C. Johnson, B. Macdonald, and D. V. Heeder.
Achieving extensibility through product-lines and
domain-specific languages: a case study. ACM Transactions
on Software Engineering and Methodology (TOSEM),
11(2):191–214, 2002.

[4] B. A. Burd. JSP: JavaServer Pages. Wiley, 2001.
[5] K. Czarnecki and U. Eisenecker. Generative Programming:

Methods, Tools, and Applications. Addison-Wesley, 2000.
[6] P. Donohoe, editor. Software Product Lines: Experience and

Research Directions, volume 576 of Engineering and
Computer Science. Kluwer Academic, Boston, 2000.

www.manaraa.com

[7] P. DuBois. MySQL. Sams Developer’s Library, 2 	,@ edition,
Jan. 2003.

[8] P. Fraternali. Tools and approaches for developing
data-intensive web applications: a survey. ACM Computing
Surveys, 31(3):227–263, 1999.

[9] P. Fraternali and P. Paolini. Model-driven development of
web applications: the AutoWeb system. ACM Transactions
on Information Systems, 18(4):323–382, 2000.

[10] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
patterns: Abstraction and reuse of object-oriented design. In
O. M. Nierstrasz, editor, Proceedings of the 7th European
Conference on Object-Oriented Programming, number 707
in Lecture Notes in Computer Science, pages 406–431,
Kaiserslautern, Germany, July 26-30 1993. ECOOP’93,
Springer Verlag.

[11] A. Goldberg and D. Robson. Smalltalk-80: The Language
and its Implementation. Addison-Wesley, 1983.

[12] G. T. Heineman and W. T. Councill, editors.
Component-Based Software Engineering: Putting the Pieces
Together. Addison-Wesley, 2001.

[13] T. Husted, E. Burns, and C. R. McClanahan. Struts: User
Guide, 2002. http://jakarta.apache.org/
struts/userGuide/index.html.

[14] T. N. Husted, C. Dumoulin, G. Franciscus, D. Winterfeldt,
and C. R. McClanahan. Struts in Action: Building Web
Applications with the Leading Java Framework. Manning
Publications Company, Nov. 2002.

[15] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented
programming. In M. Akşit and S. Matsuoka, editors,
Proceedings of the 11th European Conference on
Object-Oriented Programming, number 1241 in Lecture
Notes in Computer Science, pages 220–242, Jyväskylä,
Finland, June 9-13 1997. ECOOP’97, Springer Verlag.

[16] R. Lämmel. A semantical approach to method-call
interception. In Proceedings of the 1st International
Conference on Aspect-Oriented Software Development,
pages 41–55, Enschede, The Netherlands, Apr. 2002. AOSD
2002, ACM Press.

[17] A. Layman, E. Jung, E. Maler, H. S. Thompson, J. Paoli,
J. Tigue, N. H. Mikula, and S. D. Rose. Xml-data, Jan. 1998.
http://www.w3.org/TR/1998/NOTE-XML-data.

[18] H. Masuhara and G. Kiczales. Modeling crosscutting in
aspect-oriented mechanisms. In L. Cardelli, editor,
Proceedings of the 17th European Conference on
Object-Oriented Programming, number 2743 in Lecture
Notes in Computer Science, pages 2–28, Darmstadt,
Germany, July21-25 2003. ECOOP 2003, Springer Verlag.

[19] L. Maturo. Using Struts. White paper.
http://stealthis.athensgroup.com/
presentations/Model_Layer_Framework/
Stuts_Whitepaper.pdf, 2002.

[20] P. Merialdo, P. Atzeni, and G. Mecca. Design and
development of data-intensive web sites: The Araneus
approach. ACM Transactions on Internet Technology,
3(1):49–92, 2003.

[21] D. L. Parnas. Designing software for ease of extension and
contraction. In Proceedings of the 3rd International
Conference on Software Engineering, pages 264–277,
Atlanta, Georgia, May 10-12 1978. ICSE 1978.

[22] C. Ruppel and J. Konecny. The role of IS personnel in
Web-based systems development: the case of a health care
organization. In Proceedings of the 2000 ACM SIGCPR
conference on Computer personnel research, pages 130–135,
Chicago, Illinois, 2000. ACM Press.

[23] S. Spielman, editor. The Struts Framework: Practical Guide
for Programmers. The Practical Guides Series. Morgan
Kaufmann, Oct. 2002.

[24] C. Szyperski. Component Software, Beyond Object-Oriented
Programming. Addison-Wesley, 2nd edition, 2002. With
Dominik Gruntz and Stephan Murer.

[25] V. Turau. A framework for automatic generation of
web-based data entry applications based on XML. In
Proceedings of the 2002 ACM Symposium on Applied
Computing, pages 1121–1126, Madrid, Spain, 2002. ACM
Press.

